Skip to main content

23 posts tagged with "programming"

View All Tags

· One min read
Alvaro Jose

Welcome to our Continuous Delivery Bootcamp! We'll teach you the skills you need to get your projects out the door fast, without sacrificing quality. By the end of this program, you'll be a pro at transforming code into working software. Sign up today and start transforming your workflow!

This chapter we will do an example on how to build and validate our project in github actions.


{% embed %}

Watch the video on Youtube

· One min read
Alvaro Jose

Welcome to our Continuous Delivery Bootcamp! We'll teach you the skills you need to get your projects out the door fast, without sacrificing quality. By the end of this program, you'll be a pro at transforming code into working software. Sign up today and start transforming your workflow!

This chapter we will do an intro on the tools we will use and how to commit code with git and GitHub works


{% embed %}

Watch the video on Youtube

· One min read
Alvaro Jose

Welcome to our Continuous Delivery Bootcamp! We'll teach you the skills you need to get your projects out the door fast, without sacrificing quality. By the end of this program, you'll be a pro at transforming code into working software. Sign up today and start transforming your workflow!

This chapter we will do an iteration writing test, doing test driven development not only as a testing tool but also as a design tool.


{% embed %}

Watch the video on Youtube

· 2 min read
Alvaro Jose

psychological safety is essential for the success of software development teams. By fostering open communication and encouraging a culture of learning and innovation, teams can work more efficiently, effectively, and creatively. By promoting psychological safety, managers and leaders can help their team members to reach their full potential and take the team to the next level.

Long Version

What is psychological safety

Psychological safety refers to the belief that one will not be punished or humiliated for speaking up with ideas, questions, concerns, or mistakes. It is a shared belief held by members of a team that the team is safe for interpersonal risk-taking. This safety allows team members

Why is psychological safety important

Psychological safety is an essential aspect of any successful organization. Software development organizations are no exception.

One of the main benefits of psychological safety is the ability to foster open and honest communication. When team members feel safe to speak up, they are more likely to share their thoughts and ideas, which can lead to more efficient problem-solving and decision-making. In a field that is constantly evolving and where new technologies and approaches are continually emerging, it is essential to stay up-to-date and adapt to change.

Furthermore, it allows for creativity and innovation to flourish. When team members feel secure in their ability to express themselves, they are more likely to think outside the box and come up with new and unique solutions. In software development, this can be the difference between the success and failure of a project.

However, creating a culture of psychological safety is not always easy. It requires active effort and commitment from everyone on the team, including managers and leaders. One important step is to actively listen to and encourage open dialogue among team members. Managers should also create an environment where mistakes are viewed as opportunities for learning, not as failures.

Another important step is to establish clear guidelines and expectations for communication and behavior within the team. This can include things like setting ground rules for respectful dialogue and providing training on active listening and conflict resolution.

Finally, it is essential to hold every one on the team accountable for maintaining a culture of psychological safety. This includes managers, who should lead by example and model the behavior they expect from their team.

· 3 min read
Alvaro Jose

The singleton pattern has got a bad reputation over the years due to be widely overused in the incorrect use cases. With the proliferation of microservices, have APIs become the new singleton?

The Problem

APIs, or application programming interfaces, have become a ubiquitous part of modern software development. They allow different systems and applications to communicate with one another, enabling the creation of complex, interconnected systems that can share data and functionality. However, there has been a growing concern that APIs are being overused, leading to a proliferation of unnecessarily complex and fragile systems that are difficult to maintain and scale.

One reason for the perceived overuse of APIs is the ease with which they can be implemented. With the abundance of API management tools and frameworks available, it is relatively straightforward to expose a set of functionality as an API and make it available to other systems. This has led to a proliferation of APIs, many of which are redundant or unnecessary, adding unnecessary complexity to the overall system.

Another issue is the lack of standardization in the API ecosystem. Each API is typically designed to meet the specific needs of the system it was created for, resulting in a wide variety of different designs and conventions. This can make it difficult for developers to understand and use APIs from other systems, as they may have to learn and adapt to new conventions and patterns each time they encounter a new API.

In addition to these issues, the reliance on APIs can also lead to fragile systems that are difficult to maintain and scale. When multiple systems are tightly coupled through APIs, a change to one system can have cascading effects on others, leading to unexpected behavior and potential failures. This can make it difficult to make changes or updates to a system without the risk of breaking something else.

There are also concerns about the security of APIs. As they allow systems to communicate with one another, they can also provide a potential entry point for attackers to gain access to sensitive data or functionality. Properly securing APIs can be a complex and time-consuming task, and if not done correctly, can lead to significant vulnerabilities.

The Solution

So, what can be done to address these issues? One solution is to use APIs more judiciously, carefully evaluating whether an API is truly necessary before implementing it. This can help reduce the overall complexity of the system and make it easier to maintain and scale.

It's also important to adopt API design standards and guidelines, which can help ensure that APIs are consistent and easy to understand and use. Finally, proper API security practices should be implemented to protect against potential vulnerabilities.

· 4 min read
Alvaro Jose

The Context

Cloud and infrastructure as code have revolutionized our industry. They allowed us to be able to procure infrastructure in a simple, adaptable way.
This allowed us to move from writing huge monolithic applications to write microservices that interact between them.
One of the most accepted definition of a microservice can be expressed as:

A self-contained portion of code that does not share resources with other services, can be deployed independently, and should be easy to rewrite in a small portion of time.

This sounds great when we talk about individual parts of a software projects. Nevertheless, when thinking about systems and how they operate, There is a point to make about granularity as software does never work fully isolated. It requires interactions with other systems to fulfill their purpose.

Most of the monolithic applications of the past had an issue of being over-engineered to allow changes that might never happen.

Could that also happen with microservices?

The Issues

Clarity Of The Domain

When a system grows too much in small pieces, it becomes more and more complex to understand the big picture.
When pieces are too small, domain events start becoming exchange of information in between nodes of a network. All this removes cohesion on the knowledge over the domain of a system, making it difficult to grasp the real intention and capabilities of concepts and actors across a system.

Babel tower Issue

The more parts a system has, the less heterogeneous it becomes. This at the same time translates into a more complex environment with more integrations, frameworks and bigger learning curves that affects delivery. There need to be a balance of when and where in a system a new technology is added. Decisions must be based on needs and not on preferences.

Implicit runtime dependencies

The more a system get split, the more dependency on certain node it will have. This tends to cause more dependencies in between the pieces of your infrastructure-based puzzle where you start having god infrastructure points that become single point of failure, or you have a chain of dependent infra that need to be deployed in a go or certain order.

Hidden Complexity

The more your microservice environment grows, the more it requires a growing support infrastructure for monitoring, alerting and other services not used as part of the main system. This normally is a separate effort which has its cost. The more a system grows, those hidden complexities become a dependency for all the nodes in the system, making it a complex task to evolve and change those dependencies.

Why… if YAGNI

One of the main ideas of microservices was to be able to validate assumptions fast. Before bootstrapping new services or infrastructure, there is a need to ask ourselves about the existence of a service or infrastructure that contains the domain knowledge required for the experiment in the current ecosystem. If we are not careful, experiments won't be experiments. They will be MVPs, where domain knowledge is re-implemented, just for having it as a standalone node on the system.

Repeating Yourself

When we create pieces of code that are independent, there is always a certain level of bootstrapping that is required and repeated in each node of our systems. This will cause not only a set of duplicated code, but also has a development time cost attached to it. Bootstrapping a project in a high granularity system can be complex to standardize.

Microservices, the cloud, and infrastructure as a service have definitely revolutionized our industry, nevertheless as in everything there is a need for balance. Making sure we use the right tool for the job, and we don't over-engineer things, not only at a code level but also at infrastructure level, as everything has a cost.


In conclusion, a macro infrastructure due to microservice obsession can lead to increased complexity and overhead costs, as well as challenges in making changes and updates to the system. While microservices can offer benefits such as increased scalability and flexibility, it is important for organizations to carefully consider their specific needs and choose the right level of granularity for their architecture.

· 2 min read
Alvaro Jose

I have observed quite a few articles lately that elaborate on issues with TDD. Nevertheless, they focused on the first letter but miss the focus of the other two letters.

Not A Testing Strategy

If you take anything out of this article, please think about this quote:

If TDD was about testing it would have been called TDT (test driven testing).

The fact that we do test upfront in TDD does not mean at all that there is a direct relationship with a testing strategy, and as many preach, unit testing is not enough to create robust software.

A Design Strategy

TDD is actually a Design Strategy, this is why the 2 last letter are for driven development. This means that your final code is being moved by those tests and not the other way around.

The design that TDD will move you towards to is minimalistic. Reducing the tendency of overengineering solutions when you don't need them. This brings a reducing time to market, by reducing the accidental complexity.

When doing TDD most developers have the complexity of letting go their egos, the problem when people fight against the practices is because they think to know better. Nevertheless, it tends to generate waste because most code optimizations tend to be premature and most extensibility points will never be modified.

There are places where TDD does not fit, for example while investigating a technology through a spike or PoC because in these cases, the person is exploring knowledge not generating value. In other cases, TDD allows you to bring value in the shortest way possible.


If you are an experienced developer, do not discard TDD because you think you know better, allow it to challenge you. If you are a new developer, learn from the different ways of doing things and understand the value, don't take articles at face value.

· 2 min read
Alvaro Jose

As we develop a product over time, changes need to be made as we need to accommodate new functionality. As most of our systems don't run isolated, and we have clients that used them (ex. public API), We have to keep compatibility at least on a temporary basis. How do we achieve this?


A common practice is to have different versions for the multiple clients. While simple, it also requires significant effort to maintain as whenever an issue or bug is spotted, multiple places are affected, meaning there are more possibility of side effects.
It also makes it more difficult to make a case for clients to migrate from one to the other due to the contract changes.

This affect mostly negatively the next DORA 4 metrics:

  • Lead Time for change

Versionless: Expand & Contract

As the name says, this strategy intents to have only one state of truth and not a multitude of them. Versionless has been heavily adopted as a principle by GraphQL, for example.
We can achieve this in any code base by implementing a strategy for parallel changes called Expand & Contract, it's call this way due to the phases code goes through. Let's see for example we want to migrate from using one field value to a similar field with a more complex representation.

  • Expand: We add the new 'field' to the existing contract, and add the code to support this strategy on the existing code.
  • Contract: We monitor the usage of the old 'field' to understand when it is possible to deprecate, at that point we remove the old code.

With this, we have a clean source code that we can evolve indefinitely as required by the business.

This affect the next DORA 4 metrics:

  • ✔️ Lead Time for change